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A method of Atkinson (Numer. Math. 10 (1967), 117-l 24) for solving Fredholm equations 
of the second kind with nonunique solutions is applied to problems of plane strain/stress of a 
tibre-reinforced composite. Morland (Znt. J. Solids Struct. 9 (1973), 1501-1518) has shown 
that the problem may be. reduced to a potential problem with a nonstandard-boundary 
condition relating pairs of boundary values at the ends of the fibre chords. 

Under traction-boundary conditions an integral representation of the displacements leads to 
an equation with nonunique solutions. A careful examination of the results of Atkinson’s 
method was made and the stress and displacement fields computed for an ellipse under a 
unidirectional-tensile loading. Plots of the hoop stress are given for a wide range of fibre 
directions, traction profiles and directions, eccentricities, and material constants. 

1. INTRODUCTION 

Although the application of integral-equation methods to the numerical solution of 
boundary value problems has gained increasing prominence lately there remain many 
types of problems where they are rarely used. One such area is that in which nonuni- 
queness may occur, as happens with traction problems in the theory of elasticity. A 
technique developed by Atkinson [ 1 ] is available for nonunique solutions so that this 
should not present a problem. 

Morland [2] (and simultaneously England et al. [ 31) has set up a model for fibre- 
reinforced materials based on classical-infinitesimal theory with an assumption of 
inextensibility in the fibre directions. In problems of plane strain or plane stress in 
which the fibres are parallel, the displacement perpendicular to the fibre directions is 
shown to be a harmonic function. The pure traction problem involves a nonstandard- 
boundary condition and is ideally suited to an integral-equation method. Since the 
displacements are only determined to within a rigid-body rotation there is a nonuni- 
queness to be taken into account. 

In a subsequent paper Morland [4] proved the existence of solutions of the 
problem but the construction of solutions is not possible by analytic methods, thus a 
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numerical approach is needed. The purpose of this work is to demonstrate the effec- 
tiveness of the method of Atkinson and to present a numerical solution of the 
boundary value problem. 

Procedures for the reduction of potential problems in two and three dimensions to 
integral equations are readily available in the literature (see [5], e.g.) and Fredholm 
equations of the first or second kind may be constructed. Normally the latter type 
present fewer numerical problems. Techniques for equations of the second kind are 
reviewed by Atkinson [6]; broadly speaking two classes of methods can be identified, 
quadrature methods and expansion methods. Atkinson’s technique for dealing with 
nonuniqueness may be used with either method. In the current work a Nystrom 
method was used; this combines a quadrature method with collocation. The kernel of 
the integral equation constructed was logarithmically singular, it is easily dealt with 
by the use of a product-integration quadrature rule, i.e., one in which the singularity 
is included by writing the integral as a product of the singular part and some suitable 
approximant. 

Many practical uses have been found for fibre-reinforced composites lately and this 
has stimulated the formulation of simple models of these materials in continuum 
mechanics. In a recent article Pipkin [7] has given an account of developments of 
both the finite and infinitesimal theories over the last decade. The model developed by 
Morland is valid for a variety of geometries, finite or infinite, convex or nonconvex. 
The results to be given in this paper concern an elliptical domain whose axes of 
symmetry are oriented at an arbitrary angle to the Iibre direction. A unidirectional 
tension was applied with the direction of action at a further arbitrary angle to the 
semi axes. Profiles of the distributed tension were varied between peaked and near-flat 
shapes. Plots of the hoop stress against eccentric angle are given for a wide range of 
material constants and eccentricities. 

The numerical method worked well, certainly well enough to enable some exact 
relations to be discovered. Working in single-precision arithmetic with a relative- 
machine precision of 5 x lo-‘, six digits of accuracy were normally obtained. 

In order to apply Atkinson’s method the eigensystem of the kernel and its 
transpose at the eigenvalue in question must be determined. As the computing 
progressed, enough evidence was accumulated to enable the eigenfunctions to be 
verified analytically. The availability of the exact eigensystem enabled a suitable level 
of discretisation to be chosen. The nonuniqueness is overcome by a device which 
implicitly selects one of the multiplicity of solutions of the integral equation. The 
analysis predicts that the exact solution selected will be zero at certain of the 
collocation points. This provides a valuable guide to the accuracy of the approximate 
solution. Solutions only exist when the prescribed function of the integral equation is 
orthogonal to the eigenfunctions of the transposed kernel. In determining a suitable 
family of loading functions it was shown that this abstract condition is equivalent to 
the requirements of zero-net force and zero net-turning moment on the ellipse. 

The stresses are calculated by differentiating the displacement fields. The level of 
noise due to rounding and discretisation was sufficiently low as to enable the 
derivatives to be determined from the derivative of the sixth-degree polynomial inter- 
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polant centred on the point in question. Exact solutions for one particular set of 
traction profiles were discovered from the numerical results, thus it was possible to 
check the entire procedure. 

The results are given in Section 6. Values of the hoop’ stress were of more or less 
constant magnitudes within the parameter ranges used. As the orientation of the fibre 
lines was changed the response as measured by the hoop stress was not as varied as 
anticipated. The eccentricity was the most sensitive parameter. As e -+ 1, when the 
ellipse becomes more slender, the slopes and curvature of the plots become much 
greater and the computation required increasingly higher discretisation levels to 
maintain accuracy. 

The results obtained are regarded as good enough to merit further use of the 
technique. Further numerical experiments would be of value and a comparison with 
methods based on more established methods would be of interest. 

The paper is set out as follows. In Section 2 Morland’s work is summarised in 
sufficient detail to outline the setting up of the boundary value problem. Formulation 
of the integral equation is made in Section 3, where the role of the abstract 
orthogonality relations are shown to be equivalent to the equilibrium conditions. In 
Section 4 we shall focus on the particular case of an ellipse and derive a condition 
which enables simple identification of the admissible unidirectional tension profiles. 
Atkinson’s method, the Nystrom method and their applications to the current 
problem are explained in Section 5. The final section contains a description of the 
results of the computation. 

2. MATHEMATICAL DESCRIPTION OF THE PROBLEM 

In this section the derivation of the mathematical description of the problem is 
summarised. A more detailed account of the basic properties of inextensible 
transversely isotropic composites is given by Morland in [2]. 

The presence of the fibres renders the material inextensible in the tibre direction 
and transversely isotropic and problems are considered in which linear-elasticity 
theory is assumed valid. Let U, v, and w be the displacements referred to a Cartesian 
OXJJZ system with the fibre direction parallel to the x axis. 

In problems of plane strain or plane stress, inextensibility implies that 

au &=o*u=U(y), 

and it follows from the stress-strain relations that 

(2.1) 

au at4 
=YY 

iuL av 
=-f-v 

c aY 
~ 

xy = PL ax+& 9 
( 1 

581/46/2-4 

(2.2a, b) 
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where ,uL is the shear modulus in the x direction and c is given by 

IUL 

c2= k,+pu, 
or c* = PL& + I+) 

%kr 
(2.3a, b) 

for plane strain or stress, respectively. The shear modulus ,ur is perpendicular to the x 
direction and k, is the bulk modulus for plane strain in the transverse, yz plane. 

In the absence of body forces the y component of the equilibrium equations 
becomes 

while the x component may be integrated to give 

u xx = -PL 
( 
XU”(Y) + $) + f(Y). 

In the last equation f(y), which appears as an arbitrary function of integration, is 
determined by the equilibrium conditions at the boundary. 

For convenience the scaled coordinates 

x=x and Y= cy (2.6) 

are introduced and corresponding quantities in this system denoted by capitals, thus 
u(X, Y/c) = V(X, Y). 

V is thus harmonic, viz. 

t3*v a2v - ---co 
ax2 + f3Y2 (2.7) 

and it is shown below that in the case of a pure traction problem a boundary 
condition on V can be set up in terms of the prescribed tractions. Once V is deter- 
mined the values of U and o are easily calculated from equations (2.2), (2.5), and 
(2.10). In the present work we shall consider finite domains convex to the fibre lines; 
more general configurations and boundary conditions are treated in [2] and [4]. 

The boundary condition on V is found as follows: If pL t, denotes the x component 
of traction, then the integral of this quantity around 80 may be combined with 
Eqs. (2.2a) and (2.5) to give 

v + cXU’( Y) = M(S) + J(Y), P-8) 

where 

J(y) = + 1’ T( Y’) dY’ and M(S) = % (,f (cos2 fi + c2 sin2 #)‘12 t, ds’. (2.9a, b) 
YB 
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FIGURE 2.1 

Figure 2.1 is used to define S, 4, and any further variables associated with the 
geometry of D. S is measured from B, the m inimum point for Y on 80. The y 
component of the equilibrium equations when written in terms of the scaled coor- 
dinates becomes 

g + c cos @ l’(Y) = (cos2 # + c2 sin’ 4)‘12 pur. ty = L(S), (2.10) 

& ty is the y componenJ of the traction on aD). 
Now if (X, Y) and (X, Y) are the ends of a fibre chord and P denotes V(X, Y), by 

applying (2.8) and (2.9) at both (X, Y) and (2, Y), J and U’ may be eliminated to 
give the single condition for V 

on 80. (2.11) 

In the traction problem L(S) and M(S) are prescribed functions. 
If the domain D is symmetric about a normal to the fibre lines the problem may be 

simplified to a Neumann problem and a Robin problem (Morland [2]), thus in what 
follows we shall be concerned with domains oriented asymmetrically with respect to 
the tibre lines and we shall solve Eq. (2.7) subject to boundary condition (2.11). 

3. THE INTEGRAL EQUATION 

The boundary value problem described by Eqs. (2.7) and (2.11) may be refor- 
mulated as an integral equation. This is set up using the standard results on represen- 
tations of harmonic functions. Since the basic model admits nontrivial solutions 
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which represent rigid body motions for zero boundary tractions, the integral equation 
will have homogeneous solutions which generate these displacement fields. The 
integral operators generated by the representations of the harmonic function V are 
compact and thus the Fredholm alternative applies to the integral equation derived. 
The eigensystems of the kernel and the transpose are given below where it is also 
shown that the orthogonality conditions (on the prescribed function g, defined at 
(3.4)) of the Fredholm theory are equivalent to the equilibrium conditions on the 
boundary tractions. 

Many representations of V are possible, here we take 

V(P) = j f(S’) 1ogR dS’ 
C?D 

(see Fig. 2.1 for the notation), then by standard potential theory 

i?V 
ZT- 

- -g-(S) + i, f(F) y a’. 

(3.1) 

(3.2) 

Thus f satisfies the integral equation 

-@-((s) + J,"S', [y - $$log (G) ] a' = &n (3.3) 

where 

g(S) = L(S) - & &f(S) - Wf9). (3.4) 

It is shown in [4] that for zero data there is a solution 

v= v, + v,x, u= u,- V*Y/c (3Sa, b) 

for arbitrary values of U,, V,, and V, . Thus Eq. (3.3) has an eigenvalue equal to rr 
with null space of dimension 2. Implementation of the numerical scheme described in 
Section 5 requires the eigensystems of K and its transpose K*. Whilst these may be 
determined numerically, analytical expressions are clearly preferable. In the following 
paragraphs we determine these analytical expressions. 

Evidently f(S) = 1 is one eigenfunction, for if V = 1, then f(S) satisfies 

7$(s) = i, f(F) 7 0’ (3.6) 

and this equation hasf(S) = 1 as its only solution (Jaswon and Symm, (5, Chap. 31). 
For V=X Eqs. (3.1) or (3.2) may be regarded as an equation for$ An analytical 

solution is not available for arbitrary contours, however, when D is an ellipse, the 
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solution can be given. In terms of the parameterisation described in detail in the next 
section, we have 

f(S) = coso, + a), (3.7) 

where L is the eccentric angle and a is the angle between the tibre lines and the major 
axis of the ellipse (cf. Fig. 4.1). 

The transposed kernel differs only slightly from the original kernel, the singular 
part being symmetric, thus it is natural to guess f(S) = 1 again, and this is easily 
verified by direct calculation. It is clear that the second eigenfunction is X. While a 
rigorous proof cannot be given, it can be shown that the equilibrium conditions imply 
that X is orthogonal to g(S) and the numerical evidence in support of the assertion is 
overwhelming (see the results in Section 6(ii)). 

If 1 and X are the eigenfunctions of the transpose then 

I g(F) dS’ = 0 and I X’g(S’) de!?’ = 0, (3.8a, b) 
L?D 8D 

and it may be shown that these are implied by the equilibrium conditions as follows: 
Taking the left-hand side of Eq. (3.8a) and using the relationships (3.4), (2.9b), and 
(2.10) we have 

j 
aD 

g(Sf)dS’=( 
80 

(+&M-i@ )) dS’. (3.9) 

If the first term on the right-hand side of (3.9) is written in unscaled variables it 
becomes 

and is the total force on Di (the domain D referred to the unscaled system) in the y 
direction. For the second term on the right of (3.9), the integral which defines A4 may 
also be written in unscaled coordinates and identified as the integrated x component 
of the applied force on the boundary. This will thus be single valued on c?D if and 
only if the total force in the x direction is zero. Thus we may write the second 
integral on the right of (3.9) as the integral along the left- and right-hand side of 80. 
The variable of integration may then be changed to Y and we obtain 

Thus it has been shown that the zero net-force condition implies that the right-hand 
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side of (3.9) is zero and hence that (3.8a) is satisfied. Next consider the left-hand side 
of Eq. (3.8b); it may be expressed as 

j X’g(S’)dS’=j X’ L’-~(M’-62’) (3.11) 
ar, aD 

Now the integral expression which equals the total turning moment may be 
transformed to scaled (X, Y) coordinates and each term integrated by parts so that 

j (Xt, - vt,) ds = 1 (XL - M COS 4) dS. 
ao, a0 

The right-hand sides of (3.11) and (3.12) will be equal if 

. 
I aD 

dS=O. (3.13) 

The same argument which was used to obtain (3.10) may be applied again. Thus 
through Eq. (3.13) we see that the zero total-turning moment condition implies 
Eq. (3.8b). 

4. THE TRACTION PROBLEM FOR AN ELLIPSE 

While the methods and analyses used in this work are applicable to any convex 
domain it is preferable at this point to select a particular domain D. Symmetry about 
an axis perpendicular to the libre lines is excluded since this leads to standard 
potential problems, thus an ellipse having its axes of symmetry at an arbitrary angle 
to the libre lines was chosen. Some details concerning the parameterisation of D are 
given below followed by the derivation of the important relationship (4.15). This 
relationship facilitates a choice of traction profiles for which the zero turning-moment 
condition (and equivalently the eigenfunction conditions on the prescribed function 
for the integral equation) is satisfied. It also transpires that several superficially 
distinct problems lead to one particular right-hand side. 

The ellipse has its major axis at an angle a to the libre direction, the lengths of its 
semi-axes are a and b, and 1 parameterises the perimeter. Figure 4.1 shows further 
details. 

It is convenient to express 

where 

x = x, cos(A - A,), Y = YT cos(A - A,), (4.1) 

X, = (a’ cos* a + b* sin* a)“*, YT = (a’sin’ a + b* cos* a)“*. (4.2) 
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FIGURE 4.1 

We also have 

Iz +x = 21,, (4.3) 

cos$ = * -Y, sin@ - A,) 
(a sin’ 1+ bZ cos’ A)“* ’ and X - 2 = 2X, sin& - A,) sin(A - A,). 

(4.4) 

If the eccentric angles at P and Q are 1 and ,u, 

and 

R* = 4 sin*((A - ~)/2)( a* sin*((), + ~)/2) + b* cos*(@ + p)/2)), (4.5) 

cos y/R = ab/2( u* sin* p + b* cos* p)“* (a’ sin*((A + ~)/2) + b* cos*((A + ,u)/2)). 

(4.6) 
On substituting these expressions into Eq. (3.3) and expressing 

F(A) = nf(A)(a’ sin* A + b* cos* l)l’*, 

G(A) = g(A)(u* sin* Iz + b* cos* A)l’* (4.7) 
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(4.8) 

2fl(J, P) = 
ab YE 

(a’ sin2((l +~)/2) + b2 cos2((3, +p)/2)) + X, sin@, -A,> 

’ log 
sin2((1 - P)P)( a2 sin2((3, + ~)/2) + b2 cos’((A + p)/2)) 

sin’@,--((1+p)/2))( 2 a sin2(J,-(i1/2)+@/2))+b2 cos2(&--(L/2)+($/2))) 

The singular part of K&P) is 

zP’(A, ,a) = (27$’ YE 
X, sin& - &.) log [ 

sin2(@ - p)/2) 
sin’((U, - A - ,~)/2) 1 

with singularities at. the zeros of the sine functions. Since 0 Q 1, ,u < 211, and 
O<J,<x, these are on the lines A--p=O, I=21,--p, L=2L,-,u+27r, and at 
points I= 0, ,U = 2n and ,D = 0, ;1= 2n. The regular part of K@, ,u) is C”. 

The function G(J) is determined by combining Eqs. (2.9a), (2.10), (3.4), and 
(4.7b). The loadings which have been investigated are unidirectional tensions with 
several different profiles, and a hydrostatic-pressure loading. As mentioned earlier 
several apparently different problems lead to the same G(1). To identify these first 
suppose the tension acts perpendicular to the tibre lines, then lx = 0, and by applying 
the same forces on opposite sides of the ellipse the zero net-force condition is 
satisfied. For this special case the zero-moment condition (3.8b) can be written 

i 
.,I,+ 2lr 

t, cos(i - I,)(c2 sin’ 4 + cos’ #)“2 (a’ sin2 ,I + b2 cos’ A)‘/’ dl = 0, (4.10) 
-h 

thus we may take 

t, = r(A)(c2 sin2 Q + cos2 #)-“2 (a’ sin2 i + b2 cos’ A)-“2, (4.11) 

for any r(n) orthogonal to cos(1 -A,). The square-root factors arise from changing 
the variable of integration and in the original (x, y) system fY varies as sin@ - ,I,). 
An obvious choice is r(A) = sin(;l -A,), and in this case G and r are identical, thus 

G(L) = sin@ - A,). (4.12) 

A second special case is that of a hydrostatic pressure p applied to aDi. Then if 8 
is the angle of direction of the normal, 

t, = -p sin 8, t, = -p ~0~ e. (4.13) 
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Upon transforming the 19 dependence we obtain 

f,, = -pX, sin@ - A,)(? sin* d + cos* 4))“* (a’ sin* 1+ b* co;* A)-“* 

while f, into Eq. (2.9b) gives M  = i@ for any point. Thus G(rZ) is again, apart from a 
constant multiplier, given by (4.12). 

In the general case suppose a tension t(1) is applied parallel to the tangents at G  
and H as indicated in Fig. 4.1. The turning moment on the ellipse evaluated in scaled 
coordinates is 

N = I (X cos y + Ysin y)(c* sin* y + cos* y)-l’* t(L) dS’ (4.14) 
aD 

which in terms of I becomes 

I 
.4+2n 

N=k cos@ - /3) t(A)(c’ sin* 4 + cos* #)I’* 
4 

x (a’sin’ I + b* cos* A)“* dA, (4.15) 

where k depends on a, p, y, etc. and B is the value of J at G. Thus we may choose any 
t(A) orthogonal to 

cos(l -p)(c’ sin* d + cos* d)“* (a’ sin* A + b* cos* A)“*. 

Finally note that by choosing 

(4.16) 

t(A) = sin@ -p)(c’ sin* 4 + cos* 4)-l’* (a’sin* L + b* cos* I)-“*, (4.17) 

although M  - fi does not vanish pointwise, after a lengthy manipulation we obtain a 
G(1) proportional to sin@ - A,). Hence G(J) serves for three examples, the first being 
a particular case of the last. Note, however, that only one field variable V is the same 
in all three problems, since different data will be used in the equations which 
determine U and o. 

In the next two sections some further choices of t(J) will be described. 

5. DESCRIPTION OF THE NUMERICAL SOLUTION 
OF THE INTEGRAL EQUATION 

The numerical procedure has two parts, first an equivalent equation is constructed 
which has a unique solution and then the new equation is discretised to obtain a 
finite-linear system. The former task offers the greater difficulty and was dealt with 
by using a technique developed by Atkinson [ 11. Although the method appears to 
have attracted little attention (except for Baker [8]) it is easy to use and gave good 
results on the current problem. Discretisation of the eqution requires a product- 
integration rule to take account of the logarithmic singularities in the kernel but is 
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otherwise straightforward. A formal description of Atkinson’s method is given below 
and [l] should, be consulted for the precise analytical details. 

Let the integral equation be given on [a, b] and denoted by 

(A -K)F=G, (5-l) 

where /i is a scalar and K the compact operator generated by the kernel on the space 
of continuous functions C[a, 61 with sup norm. F and G belong to C[a, b]. Suppose 
there are m linearly independent eigenfunctions of K, 8,) 8, ,..., em, say, corresponding 
to the eigenvalue /i, and denote m linearly independent eigenfunctions of the 
transpose K* by @,..., 8:. 

A linear operator L is defined by 

LF@) = 5 FOl,J e,*(J), (5.2) 
&=I 

@<P, <cl2 < *** < ,u& < b) and Eq. (5.1) is replaced by 

(A-K-L)F=G. (5.3) 

It is shown in [I] that provided 

det Oi@j) # 0, (5.4) 

(/i -K-L)-’ exists on C[a, b] and further when G belongs to the range of (A -K) 
the solution of Eq. (5.3) simultaneously satisfies 

(A-K)F=G and LF=O. (5.5a, b) 

Since the eigenfunctions 0: are independent (5.5b) implies that Folk) = 0 for each &. 
Thus we solve Eq. (5.3) instead of Eq. (5.1), the values of F(uk) are treated as 
unknowns and when G belongs to the range of (/i -K) they should be found to be 
zero. Note that the definition of L contains an arbitrariness (because any spanning set 
{St} may be chosen) which is analytically irrelevant, but may be important in a 
numerical approximation scheme. This point is taken up in Section 6(iii). 

Approximate solutions of Eq. (5.3) were found using a Nystrom scheme. For a 
conventional-integral equation with a continuous kernel this entails approximation of 
the integral operator by a quadrature rule followed by collocation at the quadrature 
points. In the current problem the presence of the operator L necessitates the 
introduction of extra collocation points and the singularities in the kernel need special 
treatment in the approximation of K in order to ensure a reasonable rate of con- 
vergence. 

In order to approximate K the kernel is written as the sum of its regular and 
singular parts P’(& ,u) and K”‘(& ,u), respectively, then 

j*K(~,p)FC,u)dp =jbK(P)(&~)F~)& +~*K%P) Q. (5.6) a a a 
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Each term on the right-hand side of (5.6) was approximated using a piecewise- 
quadratic approximant. For the first integral Simpson’s rule was applied to the 
integrand Fb) J?(A, p) while for the second term the quadratic which interpolates 
mbjh FOI2j+ l), m/+2) was integrated up exactly with K’S’(J,,n), thus we express 

i 
' K(A, P) F@) dp  Z f (WjKtR)()c, /lj) + k?'(A) F(Uj)), 

a  j=l 
(5.7) 

where wj are the weights for Simpson’s rule and k?‘(L) are the singular weights 
obtained as explained above. 

Equation (5.3) is then approximated by 

- gl F,(v,) WA> = G(A)- (5.8) 

(The notation distinguishes between F,, the solution of (5.8) and F the solution of 
(5.2).) Approximate solutions of this equation are determined by satisfying Eq. (5.8) 
at the points 1 =p,,,uu, ,..., ,un, v ,,..., v,, thereby obtaining an (n + m) x (n + m) 
system viz. 

AI,, -A, 

-G 

in which I,, I, are unit matrices of order n and m, respectively, and 

(5.9) 

A” is nxn and aij = kjy&) + wjK’R’(li, pi), 

B, is nxm and bij = ei*(ni)9 

cn is mxn and C,j= ky’(Vi) + WjK’R’(Vi,,Uj)9 

Dn is mxm and d, = 4,*(Vi). 

G(i), G’*’ are the vectors of values of G at ,~r ,..., p,,, v, ,..., v,, and F’,“, Fk2’ are the 
vectors of approximate values of F at these points. In the case when Eq. (5.1) has a 
unique solution B,, C, and D, are absent, and if the kernel were continuous k”‘(A) 
would not appear. 

It may be shown (Atkinson [6]) that if F is four times continuously differentiable, 
then 

11 F - F, Ilrn = O(h4 log h) (5.10) 

(where nh = b - a). 
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6. RESULTS 

In this section the results of the numerical method are given; for ease of presen- 
tation the description is divided into 6 subsections. All computations quoted below 
were carried out in single precision arithmetic on a DEC PDP 10 at the University of 
Queensland which has a 27 bit binary mantissa; relative machine precision is thus 
1 X 10-8.4. 

(i) Parameter Values and Loading ProJiles 

Before the results are given in detail the range of parameter values will be 
discussed, Since the applied tractions form part of the input data these are also given. 

The physical model contains two material parameters, the constants c and ,uL 
which appear in Eqs. (2.2) and (2.3). In traction problems the constant pL can be 
absorbed into the prescribed loadings and their magnitudes factored by ,uL, leaving c 
as the remaining parameter. For c the range 0.5 <c < 1 was used, this being the 
range of values suggested by experimental data (Morland [2]). 

The geometry of the problem gives rise to further parameters, namely, the angle of 
orientation of the fibre chords and the eccentricity of the ellipse. Values of the eccen- 
tricity from 0.6 upwards were used, generally to 0.968, the latter value corresponding 
to a minor/major axis ratio of 0.25. Values above 0.968 are tractable but as the 
eccentricity approaches unity the rate of convergence is reduced and the computation 
becomes more susceptible to rounding error. 

Certain parameters are associated with the traction profiles. When a unidirectional 
tension is applied to opposite sides of the ellipse both the direction of the tension and 
the tension profile may vary. Solutions were computed for a full range of tension 
directions and sets of profiles from sharply peaked to flat, near-uniform distributions. 
A uniform-circumferential pressure was also investigated. 

(ii) Discretisation and the Eigensystem of the CoefJicient Matrix A,, 

In order to apply Atkinson’s method the eigenfunctions of the integral operators K 
and K* corresponding to /i = 1 are required. Numerical results obtained in early 
programme development provided the stimulus for the analytical derivation of the 
eigensystems outlined in Sections 3 and 4. These theoretical results in turn provided 
valuable information on the accuracy of the discretisation. 

It was observed that the best accuracy was obtained by integrating from A, - z to 
A, + rr. This may be anticipated, for relation (4.3) ensures that if lj is a quadrature 
point, so too is xi, provided 13= is itself a quadrature point. When this happens the 
approximate values for the integrals of log R and log R^ corresponding to f(S) = 1 
balance exactly, leaving only the regular part to be approximated. 

The eigensystem of A,, approximates that of K. Since unity is a once repeated 
eigenvalue of K there should be two eigenvalues of A,, which are perturbations of 
unity. These were computed for values of n from 16 to 64, a between 0.05236 (= 3”) 
and 1.4835 (= 85”) and the eccentricity from 0.6 up to 1.0. Fixing a and e first at 
0.87266 (= 50’) and 0.866, respectively, for n = 16 the two largest roots differ from 
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unity by 3 x 10d5 and 4 x 10m4 and the next largest root is about 0.7. As n increases 
up to 64 these differences reduce steadily to 1 x lo-’ and 2 x lo-‘, the former being 
1 decimal digit in the eighth position and thus attributable to rounding error. With n 
set equal to 32 and e fixed at 0.866, the values of a were found to have little influence 
on the results, thus at o = 0.05236, perturbations from unity were 1 X lo-’ and 
2 x lo-’ with next largest magnitude root about -0.3 while at 01= 1.4835 the pertur- 
bations were 1 x lo-’ and 5 x lop5 with next largest root at 0.7. 

The values of the eccentricity have a much greater influence. With n = 32 and 
a = 0.87266, values of e below 0.866 gave progressively better results as e was 
reduced, and as e gets nearer unity the perturbations increase. The larger perturbation 
for e = 0.943, 0.968 and 0.990 were, respectively, 3 x 10e5, 6 x lo-‘, and 2 x 10w3, 
and the third eigenvalue increased from 0.77 to 0.98. A run with e = 0.999 gave 8 of 
the 33 roots near 0.93, the closest to unity being 0.936. The ratio of the lengths of the 
m inor to major axis is about 4 for e = 0.968, if e = 0.990 the ratio is $, and at this 
point some approximation of the physical model should be used to take the slender 
shape into account. 

Accurate results for the eigenvalues need not guarantee good approximations to the 
eigenfunctions. The accuracy of the eigenfunctions was measured by evaluating the 
Euclidean distance of each of the computed eigenvectors from the space spanned by 
the exact eigenvectors (exact eigenvector means the vector of values of the exact 
eigenfunctions at the quadrature points). The projection of the computed eigenvectors 
onto the exact eigenspace was also calculated and compared componentwise with the 
computed eigenvector. In Table 6.1 we have tabulated the quantities 

df = n$r [/19!” - a,~$@ -/3$?f’ll: (6.1) 

fi = 11 ep - a,ey) - b,e:‘)II, (6.2) 

for i = 1 and 2, with t9i” and SF’ the computed and exact eigenvectors normalised to 
length unity, a, and bi being the m inimising values of ai and /Ii. The results confirm 

TABLE 6.1 

Pointwise and Mean-Square Distances of the 
Computed Eigenfunctions from the Exact Eigenspace 

a = 0.81266 

d: d: 

e = 0.866 a = 0.87266 e = 0.968 

fi fz n d: d: f, 52 

2(-8) 
4(-s)+ 

w--8) 3(-5) l(-4) 16 4(-4) 1(-4) 7(-3) 3(-3) 

2(-9)+ 
5(-g) 3(-7) 3(-6) 32 3(-g) 5(-g) 3(-5) 7(--5) 

-6(-s)+ 4(-7) 4(-8) 64 l (-9)+ W-6) 5(-7) 2(-6) 

‘These are zero to machine precision, a(-b) means n x 10mb. 
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TABLE 6.2 

Approximate Eigenvalues of the Kernel and Its Transpose 

a = 0.87266 
e = 0.866 n= 16 n = 32 

Kernel 1.0000339 0.99961522 l .OOOOOO2 0.99997419 
Transpose 1.0000339 0.99962537 l .OOOOOO2 0.99997423 

the analytic derivation of the eigenfunctions of Section 4. They also show that the 
dependence of the discretisation errors on n and e is very similar for both the eigen- 
values and eigenvectors. 

The same exercise carried out on the transposed kernel gave almost identical 
results. In Table 6.2 the computed eigenvalues (near unity) of the kernel and its 
transpose are compared. On the basis of these results most further computations were 
made with n = 32. 

(iii) Solutions of the Integral Equation 

After checking the eigensystem of the matrix A,, the left-hand side of Eq. (5.9) 
was set up. The submatrix [B, j D,]’ consists of two columns of values of two 
independent eigenfunctions of the transposed kernel. The constant and cosine eigen- 
functions were used. The columns of this submatrix were chosen to have Euclidean 
norm equal to unity, and the co, 2, and 1 norms were calculated for each column of 
the whole matrix. These were all within the same order of magnitude and were 
therefore accepted as suitable. Note, as observed in Section 5, that theoretically any 
multiple of either column is as equally acceptable as any other. 

In general an explicit expression for G(A) was not derived and the right-hand side 
of Eq. (5.9), [G”‘jG’Z’]T was determined by prescribing t(A), the tension profile, and 
its direction, and programming Eqs. (2.9b), (2.10), (3.4), and (3.7) which relate t, 
and ty (the resolved parts of t(A), here) to G(1). (It is only when t(k) = sin@ -/?) that 
G(J) reduces to a manageable analytic expression.) 

Since the theory predicts that F(vi) = 0 this provides a useful check on the 
solutions. The two values of F,,(vi) and the value of the maximum of lF,@J] are 

TABLE 6.3 

Values of the Solution of the Integral Equation at the Extra Collocation Points 

Function t, t2 t3 t4 

FAG) -3.3(-9) -1.4(-8) -1.9(-8) 1.5(-9) 
Fnh) -7.4(-6) -1.4(-5) -1.9(--J) 4.2(-6) 

IIFnWllm 1.7(-l) 3.3(-l) 4.6(-l) 1.9(-l) 
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compared in Table 6.3 and give a good veriticati.on of the theory. The functions used 
for the right-hand sides correspond to the loadings 

cl(A) = 2 ( 1/2uL) sin@  -l-O , 
dl 3 

t2(A) = ds F sin3(A -PI, 
L 

(6.3~) 

where dA/ds = (a’sin’ L + b2 cos2 J.)-“’ (cos2 Q + c2 sin2 $)-‘I’. The choice of f,(A) 
is explained below. Note that each t,(L) satisfies the orthogonality condition (4.15). 
In Table 6.3, e = 0.866, a = 0.87266, /I= -0.54105, n = 32, V, = (,B~ +~,)/2 and 
v2 = @22 +p2,)/2. These results are typical; dependence on the parameter values will 
be discussed later. 

The graphs of p,r,(A)/(ds/dA) for q = l,..., 4, with p = 0 are shown in Fig. 6.1. 
For each function the total tension applied (in each direction) is ,ui ‘. A peaked 
profile may readily be obtained with an odd power of a sine function. A flat profile 
may be constructed from a trigonometric polynomial of sines. The Fourier series of a 
square wave is unsuitable due to the Gibbs phenomenon but by taking (C, 1) sums 
(i.e., the arithmetic means of the partial sums of the Fourier series) a satisfactory 

I-\ 
,I 

\ 
\ 

I’ 
\ 
\ 

I .--\ \ 
,’ ,’ , \ \I 

FIG. 6.1. Graphs of the traction profiles. (-, fn = 11; ---, fn = 12; ---, fn = t3; and ---, 
fi = t4.) 
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smoothing was achieved; t,(L) is the arithmetic mean of the first four partial sums of 
the Fourier series of a square wave. 

An alternative means of obtaining a flat profile was investigated in which 
piecewise-constant values were smoothly joined with sections of fifth powers of sines, 
satisfying the orthogonality relation (4.15) while ensuring the continuity of the fifth 
derivative of G(d). The results obtained with these functions were markedly inferior 
to those obtained with t,(L). The reason lies in the fact that t4(L) is a C” function 
and periodic. The Euler-Maclaurin sum formula predicts exponentially fast 
convergence in the latter case compared with G(h5) convergence for the C5 function. 

As the extra collocation points V, and v2 are varied different solutions of the 
integral equation are obtained, but the values FW((vi) should remain near zero. More 
importantly the different solutions should generate values of V which differ at the 
most by a rigid-body motion. The results which are given in the next section show 
that the effect of varying the points vi is minimal. 

(iv) Calculation of the Field Variables 
The values of V may be computed at any point inside or on the ellipse from 

Eq. (3.1). As mentioned above several different choices of vi were made (with 
otherwise identical data) to generate solutions for V. Since all such solutions differ 
only by a linear function of X (cf. (3Sa)), this should hold in some approximate 
sense for the computed solutions. By taking the difference of two such solutions a 
linear interpolant was constructed using two data points and the difference between 
the interpolated difference and the computed difference evaluated at the remaining 
data points. Taking a = 0.87266, p = -0.54105, and c = 1.0, and defining 

E, was calculated, for t,(n) and f&), and e = 0.866 and 0.968. For four pairs of 
points Vi, and e = 0.968, .sL was close to 1.93 x 10m4 in all four cases, both for t,(J) 
and f4(IZ). For e = 0.866, E, z 2.30 x 10-4. There was remarkably little spread, only 
1 or 2 digits in the 3rd significant figure in each set of four cases. 

Once V is known on the ellipse, Eqs. (2.10) and (2.11) enable W/&V and V’(Y) to 
be evaluated. In order to calculte the stress tensor it is necessary to evaluate the 
tangential derivative of V, or at least the derivative in some direction other than that 
of the normal. The tangential derivative was computed by evaluating the derivative of 
the seven point-polynomial interpolant centred on the point in question. Some loss of 
smoothness is inevitable with such a scheme, but the excellent accuracy of the 
solutions of the integral equation ensured that this did not generate any undesirable 
noise. If such noise had occurred, then the integral representation of V inside D could 
have been used, first differentiating under the integral sign and then evaluating aV/aS 
by taking limiting values up to the boundary from the interior of the domain. 

(v) An Exact Solution 
Upon tabulating the values of the field variables it was observed that U’(Y) was 
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constant for t(A) = tr(A). By virtue of Eq. (3Sb) it then follows that there is a 
solution of this problem for which U’(Y) = 0, and from Eq. (2.10) and (2.1 l), that a 
solution for V, linear in X and Y, satisfies the boundary conditions. Thus 

V=l+mx+nY (6.5) 

with 1 and m arbitrary. From Eq. (2.2a) we have, in this special case, 

u YY = n/c 

Substituting (6.5) and (6.3a) into (2.10) we find, after some manipulation that 

1 ccos y sin@, - p) 1 n=- 
2 (c’ sin2 y + cos2 y)“’ sin&. -A,) (a’ cos2 a + b2 cos2 a)‘/’ * 

For a = 0.87266, /3= -0.54105, a = 1, e= 0.866, and c = 1 it is found that 
n = 0.439198, while using the computed values of oyy to evaluate n it was found that 

lb approx - %act 1 < 2.9 x 10-5. 

Note that the numerical differentiation of the computed values of V was used to find 
u,,,, here. Note also that it is only the geometry and parameterisation of the ellipse 
which allows such a simple solution to exist. For any other loading profiles the 
manipulations are quite intractable and there is no numerical evidence for the 
existence of further relatively simple solutions. 

FIG. 6.2. Varying the traction profile. (-, fn = t4; ---, fn = t2; ---, fn = t3; ---, fn = tl; 
a = 0.873; c = 0.866; B = -0.227; and c = 1.0.) 
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FIG. 6.3. Varying the orientation of the traction. (-, /J’ = -1.08; ---, /? = 0; ---, p = -0.537; -- 
-, /3= 0.576; a = 0.873; e = 0.866; c = 1.0; andfn = t4.) 

(vi) General Solutions 

The graphs in Figs. 6.2-6.6 are piecewise-linear plots of the tangential stress, uSS, 
against the eccentric angle around the ellipse. The starting and finishing points of the 
curves vary because changes in parameter values alter the position of the first 
quadrature point. This is always situated at A = --71+ AT. The titles and captions 
explain the purpose of the plots and list the parameter values. 

Figure 6.2 shows how the tangential or hoop stress changes with the traction 
profile, remaining tensile for the more peaked loadings and becoming compressive 
over about one third of the perimeter for the flattest, near-uniform load. The curve 
corresponding to the function t, may be checked by using the exact solution available 
in this case. 

8 ; 

8 
d 

.71 

FIG. 6.4. Varying the orientation of the tibres. (-, a = 0.175; ---, a = 0.873; ---, a = 0.524; -- 
-, a = 1.22; e = 0.866; j? = -0.227; c = 1.0; andfn = t4.) 
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FIG. 6.5. Varying the material constant c. (-, c = 0.5; ---, c = 0.8; ---, c = 0.6; ---, c = 1.0; 
a = 0.873, e = 0.866; /I = -0.227; and fn = f4.) 

Figure 6.3 shows the effect of varying the angle at which the tension is applied. 
The curves show that the width of the interval over which compressive values of 
tangential stress occur is greatest when the direction of the applied tension is nearly 
perpendicular to the fibre direction. As this angle is reduced the width of the interval 
broadens and the magnitude of the compressive values diminishes to zero. 

The effect of the orientation of the fibre lines is shown in Fig. 6.4. Note that for 
these curves p is fixed and thus the angle between the direction of the applied traction 
and the tibre lines remains nearly constant. The shape of the curves remains 
remarkably similar, the greatest differences being the range of values over which the 
hoop stress is compressive. 

8 n; 1 o- * 

FIG. 6.6. Varying the eccentricity. (-, e= 0.866; ---, e= 0.6; ---, e = 0.968; n = 0.873; 
/3 = -0.227; c = 1.0; and fn = r4.) 
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The graphs in Fig. 6.5 show that the effects of varying the material constant c are 
primarily restricted to the magnitude of the tangential stress with a small variation in 
the range of compressive values. 

In Fig. 6.6 as the eccentricity increases towards unity it is observed that the 
curvature changes more rapidly and very high slopes occur. 

It is impossible to cover all possible combinations of parameter values in a few 
plots, but those presented are intended to convey the general trends in the solutions as 
the data sets are varied. 
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